高一数学数列的知识点整理
数列是高中必
修五的内容。树立是以正整数集(或它的有限子集)为定义域的函数,是一列有序的数。数列中的每一个数都叫做这个数列的项。排在第一位的数称为这个数列的第一项(通常也叫做首项),以此类推,排在第n位的数称为这个数列的第n项,通常用am表示。br著名的数列由斐波纳挈数列,三项函数,卡特兰数,杨辉三角等。
对于正项数列(数列的各项都是正数的为正项数列);从第2项起,每一项都大于它的前一项的数列叫做递增数列。
从第2项起,每一项都小于它的前一项的数列,叫做递减数列。
从第2项起,些项大于它的前一项,有些项小于它的前一项的数列叫做摆动数列(摇摆数列)。
高二数列全部知识点
数列求和常用公式:
1)1+2+3+......+n=n(n+1)÷2
2)1^2+2^2+3^2+......+n^2=n(n+1)(2n+1)÷6
3) 1^3+2^3+3^3+......+n^3=( 1+2+3+......+n)^2
=n^2*(n+1)^2÷4
4) 1*2+2*3+3*4+......+n(n+1)
=n(n+1)(n+2)÷3
5) 1*2*3+2*3*4+3*4*5+....
..+n(n+1)(n+2)
=n(n+1)(n+2)(n+3)÷4
6) 1+3+6+10+15+......
=1+(1+2)+(1+2+3)+(1+2+3+4)+......+(1+2+3+...+n)
=[1*2+2*3+3*4+......+n(n+1)]/2=n(n+1)(n+2) ÷6
7)1+2+4+7+11+......
=1+(1+1)+(1+1+2)+(1+1+2+3)+......+(1+1+2+3+...+n)
=(n+1)*1+[1*2+2*3+3*4+......+n(n+1)]/
2
=(n+1)+n(n+1)(n+2) ÷6
8)1/2+1/2*3+1/3*4+......+1/n(n+1)
=1-1/(n+1)=n÷(n+1)
9)1/(1+2)+1/(1+2+3)+1/(1+2+3+4)+......+1/1+2+3+...+n)
=2/2*3+2/3*4+2/4*5+......+2/n(n+1)
=(n-1) ÷(n+1)
10)1/1*2+2/2*3+3/2*3*4+......+(n-1)/2*3*4*...*n
=(2*3*4*...*n- 1)/2*3*4*
...*n
11)1^2+3^2+5^2+..........(2n-1)^2=n(4n^2-1) ÷3
12)1^3+3^3+5^3+..........(2n-1)^3=n^2(2n^2-1)
13)1^4+2^4+3^4+..........+n^4
=n(n+1)(2n+1)(3n^2+3n-1) ÷30
14)1^5+2^5+3^5+..........+n^5
=n^2 (n+1)^2 (2n^2+2n-1) ÷ 12
15)1+2+2^2+2^3+......+2^n=2^(n+1) – 1
>
ps:数列的性质:
等差数列的基本性质
⑴公差为d的等差数列,各项同加一数所得数列仍是等差数列,其公差仍为d.
⑵公差为d的等差数列,各项同乘以常数k所得数列仍是等差数列,其公差为kd.
⑶若{ a }、{ b }为等差数列,则{ a ±b }与{ka +b}(k、b为非零常数)也是等差数列.
⑷对任何m、n ,在等差数列{ a }中有:a = a + (n-m)d,特别地,当m = 1时,便得等差数列的通项公式,此式较等差数列的通项公式更具有一般性.
⑸、一般地,如果l,k,p,…,m,n,r,…皆为自然数,且l
+ k + p + … = m + n + r + … (两边的自然数个数相等),那么当{a }为等差数列时,有:a + a + a + … = a + a + a + … .
⑹公差为d的等差数列,从中取出等距离的项,构成一个新数列,此数列仍是等差数列,其公差为kd( k为取出项数之差).
⑺如果{ a }是等差数列,公差为d,那么,a ,a ,…,a 、a 也是等差数列,其公差为-d;在等差数列{ a }中,a -a = a -a = md .(其中m、k、 )
⑻在等差数列中,从第一项起,每一项(有穷数列末项除外)都是它前后两项的等差中项.
<
p>⑼当公差d>0时,等差数列中的数随项数的增大而增大;当d<0时,等差数列中的数随项数的减少而减小;d=0时,等差数列中的数等于一个常数.
⑽设a ,a ,a 为等差数列中的三项,且a 与a ,a 与a 的项距差之比 = ( ≠-1),则a = .
5.等差数列前n项和公式S 的基本性质
⑴数列{ a }为等差数列的充要条件是:数列{ a }的前n项和S 可以写成S = an + bn的形式(其中a、b为常数).
⑵在等差数列{ a }中,当项数为2n (n N )时,S -S = nd, = ;当项数为(2n-1) (n )时,S -S =
a , = .
⑶若数列{ a }为等差数列,则S ,S -S ,S -S ,…仍然成等差数列,公差为 .
⑷若两个等差数列{ a }、{ b }的前n项和分别是S 、T (n为奇数),则 = .
⑸在等差数列{ a }中,S = a,S = b (n>m),则S = (a-b).
⑹等差数列{a }中, 是n的一次函数,且点(n, )均在直线y = x + (a - )上.
⑺记等差数列{a }的前n项和为S .①若a >0,公差d<0,则当a ≥0且a ≤0时,S 最大;②若a <0 ,公差d>0,则当a ≤0且a ≥0时,S 最
小.
3.等比数列的基本性质
⑴公比为q的等比数列,从中取出等距离的项,构成一个新数列,此数列仍是等比数列,其公比为q ( m为等距离的项数之差).
⑵对任何m、n ,在等比数列{ a }中有:a = a · q ,特别地,当m = 1时,便得等比数列的通项公式,此式较等比数列的通项公式更具有普遍性.
⑶一般地,如果t ,k,p,…,m,n,r,…皆为自然数,且t + k,p,…,m + … = m + n + r + … (两边的自然数个数相等),那么当{a }为等比数列时,有:a .a .a .… = a .a .a .… ..
⑷若{ a }是公比为q的等比数列,则{| a |}、{a }、{ka }、{ }也是等比数列,其公比分别为| q |}、{q }、{q}、{ }.
⑸如果{ a }是等比数列,公比为q,那么,a ,a ,a ,…,a ,…是以q 为公比的等比数列.
⑹如果{ a }是等比数列,那么对任意在n ,都有a ·a = a ·q >0.
⑺两个等比数列各对应项的积组成的数列仍是等比数列,且公比等于这两个数列的公比的积.
⑻当q>1且a >0或0<q<1且a <0时,等比数列为递增数列;当a >0且0<q<1或a <0且q>1时,等比数列为递减数列;当q
= 1时,等比数列为常数列;当q<0时,等比数列为摆动数列.
4.等比数列前n项和公式S 的基本性质
⑴如果数列{a }是公比为q 的等比数列,那么,它的前n项和公式是S =
也就是说,公比为q的等比数列的前n项和公式是q的分段函数的一系列函数值,分段的界限是在q = 1处.因此,使用等比数列的前n项和公式,必须要弄清公比q是可能等于1还是必不等于1,如果q可能等于1,则需分q = 1和q≠1进行讨论.
⑵当已知a ,q,n时,用公式S = ;当已知a ,q,a 时,用公式S = .
⑶若S 是以q为公比的等比数列,则有S = S
+qS .⑵
⑷若数列{ a }为等比数列,则S ,S -S ,S -S ,…仍然成等比数列.
⑸若项数为3n的等比数列(q≠-1)前n项和与前n项积分别为S 与T ,次n项和与次n项积分别为S 与T ,最后n项和与n项积分别为S 与T ,则S ,S ,S 成等比数列,T ,T ,T 亦成等比数列
高考数学数列公式总结
高考数学中的数列题目,主要考察学生对于数列概念的理解和数列相关知识的掌握。下面我列举几点数列解题技巧:
1. 分析数列的类型:数列
可以分为等差数列、等比数列、等差数列的前n项和、等比数列的前n项和等几种类型。在做数列题目时,首先需要明确数列类型,然后针对该类型选择相应的解题方法。
2. 列出通项公式或通项公式的递推式:根据数列的类型,可以列出数列的通项公式或递推公式。对于等差数列和等比数列,通项公式和递推公式是特别重要的。
3. 计算数列前n项和:对于等差数列和等比数列,可以通过求前n项和的方式来计算数列中的数值。这里需要记住前n项和的公式。
4. 运用数列性质:数列有多种性质,例如奇数项之和与偶数项之和相等,任意项与相
应对称项之和相等等。在解题时,需要根据问题所涉及的性质找到相应的突破口。
5. 认真阅读题目并画图:数列题目有时会给出一些条件或者图形,需要认真阅读并理解,画出相关图形以便更好地进行推理和解题。
总之,数列解题的关键在于对于数列类型的理解和掌握。做题时,需要认真分析题目,根据题目所涉及的数列类型选择相应的解题方法,同时要注意计算公式和数列性质的使用。熟练掌握这些解题技巧,可以提高数列题目的解题效率和准确性。
数学高中解题技巧
1、配方法<
/p>
把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。通过配方解决数学问题的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。
2、因式分解法
因式分解,就是把一个多项式化成几个整式乘积的形式。因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。因式分解的方法有
许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。
3、换元法
换元法是数学中一个非常重要而且应用十分广泛的解题方法。我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。
高中数列公式总结大全
通项公式 an=a1+(a2-a1)(n-1)+(a3-2a2+a1)
(n-1)(n-2)/2
高中数学数列笔记整理
1、大家认为数列难学是因为从一开始的时候,就没有认真听讲,以至于到后面会觉的很难。
tps://p3.douyinpic.com/large/tos-cn-i-0022/04f531d8d1524b949c6765fdbf5c4a82" width="600" height="400" />
3、开始学习的时候,第一遍一定要自己做好预习,预习很重要,当你预习过好再听老师讲,就会觉得不是很难懂。
4、数列这一模块,不用全部都弄懂,因为即使全部都弄懂,考试的时候也并不是的欧会做,因为它实在不好想,所以要有选择的学习。
5、首先就是把基本的公式学好记好,其次就是多做好练习。
rge/tos-cn-i-0022/5883705b965c4d589626128fb24ab0bc" width="600" height="400" />
6、有些公式很复杂,那就不要记了,以为即使记住了,题不见得就会做了。只要把小公式,简单的逻辑记好就可以了。